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2.4 Quantum confined electrons

We will now focus our attention on the electron charge densities in case
of one, two and three-dimensional confinement. All the relations will
be then used in the self-consistent solution of the Poisson/Schrödinger
equation.

2.4.1 Integration over the k space

Consider a function f defined in the k-space. The sum of f over k is

I =
∑

k

f(k) (2.70)

(2.70) can be written as

∑

k

f(k) =
L3

(2π)3

∑

k

f(k)
(2π)3

L3
, (2.71)

where L is the sample size along each direction, and (2π)3

L3 is the vol-
ume occupied by one state in the k-space. If the available states are

continuous rather than discrete, the quantity (2π)3

L3 can be seen as an
infinitesimal volume (∆k)3. As a consequence, the sum becomes an in-
tegral, and (2.70) can be expressed as

∑

k

f(k) =
L3

(2π)3

∑

k

f(k)(∆k)3 ≈
L3

(2π)3

∫

f(k)dk. (2.72)

In general, we can generalize to a generic dimensionality d and make the
following substitution

∑

k

f(k) → 2 ×
Ld

(2π)d

∫

f(k)(dk)d (2.73)

where we have also considered the spin degeneracy. This relation will
result to be very useful in the derivation of the electron density whose
general expression at the equilibrium is [11]

n(r) =
∑

i

f0(Ei)|Ψi(r)|2 (2.74)

where the sum is performed over the single energy levels Ei, and f0 is
the Fermi-Dirac distribution function.
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and let us call a(x, y, z) the term that we have neglected in passing from
(2.80) to (2.81):

a(x, y, z) ≡ T̂yzψχ− ψT̂yzχ; (2.83)

if the approximation is valid a(x, y, z) must be much smaller than E −
E1i(y, z) in any point of the domain, which means that the parameter
δ, which we define as

δ ≡ maxx,y,z

∣
∣
∣
∣

a(x, y, z)

[E − E1i(y, z)]ψ(x, y, z)χ(y, z)

∣
∣
∣
∣

(2.84)

must be much smaller than 1.
Since χ obeys the 2D density of states, it can be written as χ =

Aej(kyy+kzz), where

!2k2
y

2my
+

!2k2
z

2mz
= E − E1i (2.85)

As a numerical example, we have considered the case of a silicon
MOSFET with channel length equal to 50 nm and oxide thickness equal
to 2.5 nm investigated in [12] considering the low lying subband.

In Fig. 2.1 we plot delta as a function of the gate voltage for a “con-
tinuous” doping profile (solid line) and for an “atomistic” doping profile
(dashed line) : in both cases δ is smaller than 10−3.

The eigenfunction Ψ can be then expressed as

Ψi,ky,kz (x, y, z) =
ejkyyejkzz

√

LyLz
ψi(x, y, z) (2.86)

where Ly and Lz are the system size in the y and z direction, respectively,
while ψi(x, y, z) is the i − th eigenfunction. Using (2.74), we obtain

n(x, y, z) =
∑

i

σi|ψi(x, y, z)|2 (2.87)

where

σi
def
=
∑

ky,kz

f0(Ei,ky ,kz)

LyLz
(2.88)

Ei,ky ,kz = ϵi +
!2k2

y

2my
+

!2k2
z

2mz
(2.89)

Quantum confinement in one direction
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and ϵi is the i-th energy level in the x-direction Making the following
variable transformation

k′
y =

ky
√

2my
; k′

z =
kz√
2mz

(2.90)

we obtain
dk2 = dkydkz = 2

√
mymzdk′

ydk′
z (2.91)

while (2.89) becomes

Ei,k′
y ,k′

z
= ϵi + !

2k′2
y + !

2k′2
z = ϵi + !

2k′2 (2.92)

By means of eqs. (2.73),and (2.91), and using cylindrical coordi-
nates [13]

∑

ky,kz

→ 2 ×
LyLz

4π2
2
√

mymz

∫ 2π

0
dθ

∫ ∞

0
k′dk′ (2.93)

we can evaluate σi

σi =

∫ 2π

0
dθ

∫ ∞

0

√
mymz

π2
k′dk′f0(Ei,k′

y ,k′
z
)

=

∫ ∞

0

2
√

mymz

π
k′dk′f0(Ei,k′

y ,k′
z
) (2.94)

From (2.92), we can replace dk′ in terms of dEi,k′
y ,k′

z
,

dEi,k′
y ,k′

z
= 2!

2k′dk′ (2.95)

and obtain

σi =

∫ ∞

ϵi

√
mymz

π!2
f0(Ei,k′

y ,k′
z
)dEi,k′

y ,k′
z

(2.96)

and finally

σi =

√
mymzKBT

π!2
ln

[

1 + exp

(
ϵi − EF

KBT

)]

(2.97)

where KB is the Boltzmann constant, T is the temperature and EF is
the Fermi level.

The electron concentration can be then expressed as

n(x, y, z) =
∑

i

|ψi(x, y, z)|2
√

mymzKBT

π!2
ln

[

1 + exp

(
ϵi(y, z) − EF

KBT

)]

(2.98)

-
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2.4.3 Two-dimensional quantum confinement

The considerations in the previous section, similarly apply when quan-
tum confinement is predominant in the y−z plane. The two-dimensional
Schrödinger equation reads,

−
[

!2

2

∂

∂y

1

my

∂

∂y
+

!2

2

∂

∂z

1

mz

∂

∂z

]

χi

= Ei,kxχi. (2.99)

while the three-dimensional eigenfunctions can be expressed as

Ψkx,i =
ejkxx

√
Lx

χi(y, z) (2.100)

where χi(y, z) are the eigenfunctions associated to the energy level ϵi(x)
and the total energy reads

Ei,kx = ϵi(x) +
!2k2

x

2mx
(2.101)

The electron concentration is

n(x, y, z) =
∑

i

|χi(x, y, z)|2αi (2.102)

where

αi =
∑

kx

f0(Ei,kx)

Lx
(2.103)

Using (2.73),

αi = 2
Lx

2π

∫ +∞

−∞

f0(Ei,kx)

Lx
dkx =

2

π

∫ +∞

0

f0(Ei,kx )

Lx
dkx (2.104)

Expressing kx as

kx =

√

2mx(E − ϵi)

!
(2.105)

and deriving with respect to E we obtain

dkx =

√
2mx

2!
√

E − ϵi
dE (2.106)
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Substituting (2.106) in (2.104), we obtain

αi =
2mx

π!

∫ ∞

ϵi

1
√

(E − ϵi)

1

1 + e
E−EF
KBT

dE (2.107)

and multiplying and dividing by
√

KBT , we obtain the final expression
for the electron density

n(y, z) =
1

π

(
2mxKBT

!2

) 1
2 ∑

i

|χi(x, y, z)|2F− 1
2

(
EF − ϵi(x)

KBT

)

(2.108)
where F− 1

2
is the Fermi integral of order − 1

2 :.

F− 1
2
(y) =

∫ ∞

0

x− 1
2

1 + ex−y
dx (2.109)

2.4.4 Three-dimensional quantum confinement

For what concerns three-dimensional quantum confinement, (2.74) re-
duces to

n(r) =
∑

i

|Ψi(r)|2
1

1 + e
Ei−EF

KBT

(2.110)

where Ψi is the orbital associated to the i-th eigenvalue, with energy Ei.
However for a system with very few electrons, we cannot define a Fermi
level, thence it is improper to fix the Fermi energy.

A more proper approach is then represented by fixing the number of
electrons in the system and using in (2.74) the Gibbs statistic. However
the Gibbs statistics in the grand canonical ensemble is rather compli-
cated, so it is worth following a simpler approach represented by consid-
ering the ground-state of the confined region and filling the energy levels
starting from the lowest.

The electron density, can then be expressed as

n(r) = 2
m
∑

i=1

|Ψi(r)|2 + (N − 2m)|Ψm+1(r)|2 , (2.111)

where m = ⌊N
2 ⌋ is the number of fully occupied single electron levels.
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2.5 3D Poisson/Schrödinger equation

As introduced at the beginning of this chapter, as dimensions becomes
smaller and smaller, quantum confinement effects becomes relevant. A
proper simulation approach requires thence solving the Schrödinger equa-
tion together with the Poisson equation, in a self-consistent iterative
scheme. However, at nanoscale dimensions, not only quantum confine-
ment affects device behavior, but also other effects whose nature is purely
electrostatic, limit the performance of the device. We refer for example
to the charge sharing effects that lower the threshold voltage in MOS-
FET devices, or to the random distribution of dopants that can affect
the conductivity in the channel.

In order to take into account this wide variety of effects, a three-
dimensional simulation approach has to be followed.

In particular the Poisson equation in the three-dimensional simula-
tion domain reads

∇ [ε(r)∇φ(r)]

= −q
[

p(r) − n(r) + N+
D (r) − N−

A (r) + ρfix(r)
]

, (2.112)

where φ is the electrostatic potential, ε is the dielectric constant, p and n
are the hole and electron densities, respectively, N+

D is the concentration
of ionized donors, N−

A is the concentration of ionized acceptors, and ρfix

is the fixed charge concentration.
In all the simulations that we have performed (which will be shown

in the following chapters), we have considered quantum confinement of
the electrons, while a semiclassical expression has been assumed for the
other densities.

For what concern the exchange term Vexc, we have considered the
expression in [4]

Vexc = −
q2

4π2ε0εr

[

3π2n(r)
] 1

3 , (2.113)

which differ by the exchange potential found by Slater by a factor of 2
3 .

We have found that the above expression, valid for a 3D system, has
an impact on the results only inside the confined regions, while it turns
out that exchange corrections to the potential are negligible in the other
regions of the analyzed structures.

From a numerical point of view, the coupled Poisson and Schroe-
dinger equations are solved by means of a Newton-Raphson method with
a predictor-corrector scheme [14], that we have verified to be faster and


