next up previous
Next: Three-dimensional quantum confinement Up: Quantum Confined electrons Previous: One-dimensional quantum confinement

Two-dimensional quantum confinement

The considerations in the previous section, similarly apply when quantum confinement is predominant in the $y-z$ plane. The two-dimensional Schrödinger equation reads,

$\displaystyle {-\left[\frac{\hbar^2}{2}\frac{\partial}{\partial y}\frac{1}{m_y}...
...al z}\frac{1}{m_z}\frac{\partial}{\partial z}\right]\chi_i} = E_{i,k_x} \chi_i.$

while the three-dimensional eigenfunctions can be expressed as
\begin{displaymath}
\Psi_{k_x,i}=\frac{e^{jk_xx}}{\sqrt{L_x}}\chi_i(y,z)
\end{displaymath} (29)

where $\chi_i(y,z)$ are the eigenfunctions associated to the energy level $\epsilon_i(x)$ and the total energy reads
\begin{displaymath}
E_{i,k_x}=\epsilon_i(x)+\frac{\hbar^2k_x^2}{2m_x}
\end{displaymath} (30)

The electron concentration is
\begin{displaymath}
n(x,y,z)=\sum_i \vert\chi_i(x,y,z)\vert^2 \alpha_i
\end{displaymath} (31)

where
\begin{displaymath}
\alpha_i=\sum_{k_x}\frac{f_0(E_{i,k_x})}{L_x}
\end{displaymath} (32)

Using (4),


\begin{displaymath}
\alpha_i=2\frac{L_x}{2\pi}\int_{-\infty}^{+\infty}
\frac{f_...
...rac{2}{\pi}\int_{0}^{+\infty}
\frac{f_0(E_{i,k_x})}{L_x} dk_x
\end{displaymath} (33)

Expressing $k_x$ as
\begin{displaymath}
k_x=\frac{\sqrt{2m_x(E-\epsilon_i)}}{\hbar}
\end{displaymath} (34)

and deriving with respect to $E$ we obtain
\begin{displaymath}
dk_x=\frac{\sqrt{2m_x}}{2\hbar \sqrt{E-\epsilon_i}}dE
\end{displaymath} (35)

Substituting (37) in (35), we obtain


\begin{displaymath}
\alpha_i=\frac{2m_x}{\pi \hbar}\int_{\epsilon_i}^\infty
\frac{1}{\sqrt{(E-\epsilon_i)}}
\frac{1}{1+e^\frac{E-E_F}{K_BT}}dE
\end{displaymath} (36)

and multiplying and dividing by $\sqrt{K_BT}$, we obtain the final expression for the electron density
\begin{displaymath}
n(y,z)=\frac{1}{\pi}\left(\frac{2m_xK_BT}{\hbar^2} \right)^{...
...F_{-\frac{1}{2}}
\left(\frac{E_F-\epsilon_i(x)}
{K_BT} \right)
\end{displaymath} (37)

where $F_{-\frac{1}{2}}$ is the Fermi integral of order $-\frac{1}{2}$ :.
\begin{displaymath}
F_{-\frac{1}{2}}(y)=\int_0^\infty
\frac{x^{-\frac{1}{2}}}{1+e^{x-y}}dx
\end{displaymath} (38)


next up previous
Next: Three-dimensional quantum confinement Up: Quantum Confined electrons Previous: One-dimensional quantum confinement
Fiori Gianluca 2005-11-11