

$$
\begin{aligned}
& Y_{k_{x, i}}=\frac{e^{j k_{x x}}}{\sqrt{L_{x}}} X_{i}(y, z) \quad \text { compinamentor } \bar{e} \\
& E_{i, k x}=\varepsilon_{i}(x)+\frac{\hbar^{2} k_{x}^{2}}{2 m x} \\
& n(x, y, z)=\sum_{i}\left|X_{i}\right|^{\sum_{k x}^{2} \frac{f\left(E_{i}, x_{m}\right)}{L_{x}}}=\underbrace{}_{\alpha_{i}}\left|X_{i}\right|^{2} \alpha_{i} \\
& \alpha_{i}=\sum_{k x} \frac{f\left(E_{i}, k_{a}\right)}{L x} \simeq \frac{21 / x}{2 \pi} \int_{-\infty}^{+\infty} \frac{f\left(E_{i}, k_{x}\right)}{y_{k}} d k_{x}=\frac{2}{\pi} \int_{0}^{+\infty} f\left(E_{i, k}\right) d k_{x} \\
& k_{x}=\frac{\sqrt{2 m_{x}\left(E-\varepsilon_{i}\right)}}{\hbar} \Rightarrow d k_{x}=\frac{1}{\hbar} \frac{\sqrt{2 m_{x}}}{2 \sqrt{E-\varepsilon_{i}}} d E \\
& \alpha_{i}=\int_{\varepsilon_{i}}^{+\infty} \frac{2 m_{k}}{\pi \hbar} \frac{1}{\sqrt{E-\varepsilon_{i}}} \&\left(E-\varepsilon_{i}\right) d E
\end{aligned}
$$

NTEGRALI DI FERPI-DIRAC

$$
\begin{aligned}
& F_{j}(x)=\frac{1}{r(j+1)} \int_{0}^{+\infty} \frac{t^{j}}{e^{t-x}+1} d t \\
& \frac{\delta_{j}}{\partial x}=F_{j-2}
\end{aligned}
$$

areiv
"NOTES ON FERMI-DIRAC INTEGRALS"
R.KIM \& M. CUNDSTROM

$$
\begin{aligned}
& F_{-\frac{1}{2}}(y)=\int_{0}^{+\infty} \frac{1}{\sqrt{x}} \frac{1}{1+\operatorname{lesp}(x-y)} d y \\
& M_{A \Delta}=\frac{1}{\pi}\left(\frac{2 m_{x} k_{B} T}{\hbar^{2}}\right)^{1 / 2} \sum_{i}\left|X_{i}\right|^{2} F_{-1 / 2}\left(\frac{E_{F}-\varepsilon_{i}}{k_{B} T}\right)
\end{aligned}
$$

3D confivencent

$$
u=\sum_{i}\left|\psi_{i}\right|^{2} \frac{1}{1+\operatorname{lop}\left(\frac{\varepsilon_{i}-E_{F}}{\xi_{B T}}\right)}
$$

