Non－Equlibium Green＇s Fuction（NEGF） Friday， 14 December 2018 09：07

S．Dattor，Supesbittice \＆Hirostructeres，Vol．28，No．Y，P．253， 2000 S．Dalta，＂From atoms to hassisters＂，Ed．Cambiridge Unveresity Press（Capt．8，9，10）
Nanoluber．org：lecture
To nobe trassent mablem，you need these ingredients：
H，Σ（yau car have multiple leads，so $\Sigma_{1}, \Sigma_{2}, \ldots \Sigma_{m}$ ）Ingidents
The＂reapus＂：

$$
\begin{aligned}
& G=\left[E I-M-\Sigma_{1}-\Sigma_{2}\right]^{-2} \quad \text { Grears function Mabix } \\
& \Gamma_{1}=j\left[\Sigma_{1}-\Sigma_{1}^{+}\right] \quad \text { Srectaol Mataic } \\
& T_{2}=j\left[\Sigma_{2}-\Sigma_{2}^{+}\right] \\
& \operatorname{LDOS}_{1}=\frac{1}{2 \pi} \operatorname{diag}\left\{G \Gamma_{1} G^{+}\right\} \\
& \operatorname{LDOS}_{2}=\frac{1}{2 \pi} \operatorname{diag}\left\{G \Gamma_{2} G^{+}\right\} \\
& T=\operatorname{tr}\left\{\Gamma_{2} G \Gamma_{1} G^{+}\right\}=\operatorname{tr}\left\{\Gamma_{1} G \Gamma_{2} G^{+}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& n=2 \int_{E_{c}}^{+\infty} d E\left\{L \operatorname{Dos}_{1} f\left(E-E_{F_{1}}\right)+L \operatorname{Dos}_{2} f\left(E-E_{F_{2}}\right)\right\} \\
& P=2 \int_{-\infty}^{E_{V}} d E\left\{L \operatorname{Dos}_{1}\left[1-f\left(E-E_{F_{1}}\right)\right]+L \operatorname{Dos}_{2}\left[1-f\left(E-E F_{2}\right)\right]\right\}
\end{aligned}
$$

Self－comishut solution
Embional nolution for ϕ

LANDAER＇S FORMILA

$$
I=\frac{2 g}{n} \int_{-\infty}^{+\infty} d E T(E)\left[f\left(E-E_{F n}\right)-f\left(E-E_{F 2}\right)\right]
$$

