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AbstracflWe have investigated the main scattering mech- mobility due to additional scattering mechanism, such as edge
anisms affecting the mobility in graphene nanoribbons using roughness.

detailed atomistic simulations. We have considered carrier scat- The single most important aspect that makes graphene in-
tering due to acoustic and optical phonons, edge roughness, single

defects, and ionized impurities, and we have debned a methodol-Feres’[ing for nanoscale elegtronics is its very high mo?’i”ty- It
ogy based on simulations of statistically meaningful ensembles of IS therefore of paramount importance to understand if nano-

nanoribbon segments. Edge disorder heavily affects the mobility structured graphene can also preserve the high mobility

at room temperature in narrower nanoribbons, whereas charged (often) measured in graphene sheets, much larger than that of

impurities and phonons are hardly the limiting factors. Results — -,nyentional semiconductors. In addition, one would need to

are favorably compared with the few experiments available in the . o .

literature. understand the effect on the mobility of different options for
graphene functionalization, which could be required to open a

' semiconducting gap in graphene.

In the current situation, theoretical investigations [6], [7] and
numerical simulations [8]D[10] can represent a useful tool to as-
sess the relative impact of different sources of nonidealities on

WO-DIMENSIONAL graphene sheets have demonstratedobility and, consequently, on device performance to provide
really attractive electrical properties such as high carriguidelines for the fabrication process and a realistic evaluation
mobility [1], [2] and large coherence length [3]. Howeverpf the perspectives of graphene in nanoelectronics.
the experimental data of mobility available in the literature An analytical method and a Monte Carlo approach, for ex-
show huge dispersion, ranging from?1@ 10* cm?/Vs at ample, have been adopted in order to study line-edge roughness
room temperature, signaling that the fabrication process is s{llER) and phonon scattering-limited mobility in [6] and [7], re-
poorly optimized and not fully repeatable. To guide the procespectively. However, due to the reduced width of the considered
optimization, an exhaustive interpretation of physical mechievices, effects at the atomistic scale are relevant; therefore,
anisms limiting the mobility would be extremely useful. Foaccurate simulation approaches such as semiempirical tight
graphene nanoribbons (GNRs), a comprehensive experimemiading are needed.
characterization of the mobility is still lacking, mainly due to In this paper, we present atomistic simulations of GNR
the difbculty in patterning in a repeatable way very narroweld-effect transistors (FETS), considering GNR widths ranging
ribbons. Few recent interesting experiments are reported in fAdm 1 to 10 nm and including scattering due to LER, single
and [5]. GNRs may also suffer the signibcant degradation défects, ionized impurities, and acoustic and optical phonons.
A direct comparison with recently fabricated devices [4] will
also be performed. Statistical simulations performed on a large
ensemble of nanoribbons with different occurrences of the
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disorder realizations for 1.12-nm-wide GNRs. Due to the com-
putational cost, at least 40 nanoribbons segments have been
instead simulated for 10.10-nm-wide GNRs.

Statistical simulations of random actual distributions of de-
fects, LER, and ionized impurities have been computed through
the self-consistent solution of 3-D Poisson and Schrsdinger
equations within the nonequilibrium GreenOs function formal-
. " ism, with a p, tight-binding Hamiltonian [10], extensively

NL exploiting our open-source simulator NanoTCAD VIDES [12].
In particular, we have imposed at both ends of the segments
null Neumann boundary conditions on the potential and open
boundary conditions for the transport equation.
GNR is therefore the sum dfi channel resistances and one In order to compute the LER-limited mobility, gr , sta-

I

QR

Fig. 1. GNR-FET channel with lengtL and the simulated GNR segment
with lengthL .

contact resistance, i.e., tistical simulations have been performed, considering a given
! N # fractionH of single vacancy defects at the edgdsis dePned
Riot = Rai +Rs =N"R#! (N! 1)Rg (1) as the probability for each carbon atom at the edges to be

vacant. In practice, each sample of the nanoribbon with edge
disorder is randomly generated, assuming that each carbon site
where"R#= (N ) 'L, Rj is the mean resistance evaluategt the edges has probability to be replaced by a vacancy. The

on the ensemble of nanoribbon segments. Therefore, the mohiltl hopping parameter has been imposed in correspondence of

i=1

ity of a long channel would read a defect at the edge.
L2, Gt L2, 1 Defects have been modeled using the on-site energy and the
Hn = Owt O N'R#! (NT DR (2)  hopping parameter extracted from discrete-Fourier-transform

calculations [13]. In particular, for a bxed defect concentration
where indexn denotes each type of scattering mechanispy, each sample of the nanoribbon with defects is randomly
limiting the mobility (defects, edge roughne§s or impurigenerated, assuming that each carbon atom has probatility

ties),Lwt = NL is the total GNR lengthQur =  ;2; Qi =  to be replaced by a vacancy.
N "Q#is the total charge in the channel, at@#is the mean  As previously assumed &b initio calculations [14], we have
mobile charge in a segment. considered a surface-impurity distribution of positive charges

For large values dfl , one can discard 1 with respectoin  equal to+ 0.4 g placed at a distance of 0.2 nm from the GNR
(2) so that we obtain the formula that we use in this paper [1Eurface, where is the elementary charge. Againnife is the
L2 impurity fraction, a sample with surface impurities is randomly
Mn = (R#! Rg)"OQF (3) generated by assuming that each carbon atom has probability
nvp to be at 0.2 nm from an impurity in the dielectric layer.
The root mean squared error of mobility has been computed In Fig. 2(a) and (b), we show the distributions @fwhen
by means of a Taylor expansion up to the Prst order of (8pnsidering the LERH = 5% and the defectay = 2.5% for
with respect to statistical Buctuations of resistaRce Rep + W = 1.12 nm. In each picture, we show the mean valQe
Rs, i.e., and the standard deviatidn, of the random variabl€. For
f ) I R comparison, the corresponding normal distribution is shown.
bp= /%(0 = "Q# P = Wigzrre 4 The phonon-limited mobilityiy (both acoustic and optical)
("R# ! RB) - B has been computed by means of a semianalytical model as in
and therefore [6] but extending the KubobBGreenwood formalism beyond the
& "y effective-mass approximation and accounting for the energy
I ﬁ = # I (5) relaxation at GNR edges [15]. Starting from the Boltzmann
R#! Re transport equation, the phonon-limited mobility for a 1-D con-
( !,%W and ductor can be expressed as [16]

N _, e (k) 1
1Z2=U(N! 1) (R!"R#? 6) P T j o T Tk
i=1

N

where! R =

*

()

is th . R wherev,; = (1/!) dE;j/dk is the electron velocity in the lon-
IS Stet\_/atr_|an|ce_ 0 I. i f th ist | @'tudinal directiorx for thej th electron subband ar#; is the
auistical simufations ot the resistance on a large ensem }Jerresponding momentum relaxation time for electronbphonon

of nanoribbon segments with different actual distributions %catterlng In (7)"a#denotes the expectation value averaged on
nonidealities have been performed. In particular, mobjlity the Fermi factof as

has been computed in the linear-transport regime for large gat
voltagesVgs and a small drain-to-source biggs = 10 mV. 2 1
The mobility has been extracted by means of (3), considering "g#= ——  dk 25 a(kx) f (k) 8)

. 2o n
an ensemble oN = 600 nanoribbon segments with different b 1$

+$
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70 contributing subbands[17], i.e.,
6ol @ w=1.12 nm 3
v %
| <Q>/q= 0.8809 - 2q . f(E)[1! f(E)]
N LER 5% Oq/q=0.0642 Hph $! nop Wka T dE#PJ(E)—E I Eq + Eqp
§ 40} I Eq
5 & .
8 30¢ Ecjo - 2 2 vz
o % —= (E! E¢j + Ecjp)°! E& 12
® 50| 0 m; ( Cj cio) Cjo (12)
1o wheren,p = nip /W is the total 2-D electron densityy is
0 07 07508 085 09 095 1 135 17 145 the GNR width, and is the temperature.
T T ag I For what concerns longitudinal phonons, scattering rates
80 . are evaluated as in [6]. According to [6], only intrasubband
70l ©) w=1.12 nm | scqttering has been consiqered. In particular, the longitudinal
optical (LO) phonon scattering rate reads as
60 <Q>/q=0.5350
] 0q/q=0.1090 n&$D2
g % ] V#op(E) = AT P o (E + ! &)
t 40 () oW &o
3 DEF 2.5% 11 f(E+180)
g 30 %(1+CoS' k) — - 107 (13
S i o kk') 11 f(E) (13)
10 where n' = 1/[exp(! &o/kgT)! 1] is the BoseDEinstein

. PR ) i
0==93 4 o5 oE OF 08 D5 occupation factor an(_h =n + 1, & is _the optlca_l-
a/q phonon energyDop is the optical deformation potential,
and %= 7.6%10 & g/cn? is the 2-D density of graphene.
Fig. 2. Distributions of charg® in each GNR segmerW = 1.12 nn)  Factor (1+cos ' k') arises from the spinor nature of the
obtained from statistical simulations of random distributions of (a) LE i ; L= [
(H = 5%) and (b) defecténg = 2.5%). Rraphene e|genfunct|ons,l ar_ﬁqi,!(. it _where j
arctg (kx/k y;). Here,ky (k) indicates the initial (Pnal) lon-
) ) ) gitudinal electron wave vector referred to the Dirac point,
wheren;p is the 1-D carrier density. In order to compute (7)Whereaskyj = 28j/ [(I + 1)a] andk,; (which is equal tok,

the following electron dispersion curve has been exploited fQ4; intrasubband scattering) are the quantized initial and bnal

thej th subband [15]: transverse wave vectors, respectively, wheeis the graphene
. e lattice constant,is the number of dimer lines, and= 1, ..., 1.
E; (ki) = Eéjo + Egpo -x +Eq ! Ecp ) The intravalley longitudinal acoustic (LA) phonon scattering
rate can be expressed as

2
whereEc; = Ecjo ! 0" ¢ is the cutoff energy of thgth sub- Vbt pci (E) = nph$DAc(1x% (EY(1+COS' v vt 14
band when the electrostatic channel poteritigl is different i (B) 4%W ¢ oi (E)( ) (14)
from zero Ecj = Ecjo for" ¢ = 0V). According to [15], the . . _ _ )
effective electron mass; on thej th subband reads wherengn = n™ + n°, Dac is the deformation potential for

acoustic phononsys = 2%10* m/s is the sound velocity in
graphene, antt, | = 2|ky| is the module of the phonon wave
vector under the backscattering condition.

For both acoustic and optical phonons, we have consid-
wheret is the graphene hopping paramete2(7 eV) andA; =  ered the four lowest subbands. The electron momentum relax-
cos@j/ (1 + 1)), wherel is the number of dimer lines of theation time#s; is computed by adding the relaxation rate due
GNR. For the Pbrst conduction subbarithjy = E4/ 2, where to the electron scattering with acoustic and optical phonons
E,, is the energy gap arjd(which runs from 1 td) is the index [17]. As a bnal remark, the effective mobility, including all
for whichA; is closesttd 1/2. types of scqttering sources, has been extracted by means of

The corresponding density of states, accounting for the évlathiessenOs rule, i.elplos = Uper + Ypg + Ve +
ergy relaxation at outermost layers of the GNR [15], reads L/l pn, Where gg and pywp are the defect- and impurity-

limited mobilities, respectively. We have veribed the validity
2 m; (E + Ecjo ! Eg;)? of MathiessenOs rule, considering samples with more sources
%p;j (E) = $ [Eco(E! Ec)(E + 2Eco | E)l of nonidealities (i.e., LER, ionized impurities, and defects)
' Goi=r =d @0 =a (11) at the same time. Then, we have compared the computed
mobility with that obtained by adding single contributions with
By means of (9) and (11), the phonon-limited mobility of aMathiessenOs rule, observing a relative error smaller than 3%,
1-D conductor [see (7)] can be expressed as the sum overvetliich lies within the statistical error.

_ 2! 2ECj0

e 10
M = 3a2A, (10)
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Fig. 3. Three-dimensional structure of the simulated GNR segment. Fig. 5. (a) Defect-limited mobility as a function oV for nyp = 9!
102 cm' 2 and for different defect fractionsy . (b) Mobility as a function of
[0 e n,p for a defect fractiomy = 0.5%. (c) Inverse of the mobility as a function
104k E 1k ofng fornop = 9! 102 cmt 2 and for different GNR widthsV .
= : /Fani (zRE 22)3 61
> . .
o s 14 expected to be heavier, whereas for wider GNRs and for smaller
210% i E H, such a law is not obeyed. In particular, for a GNR width
£ PAGDEMDING P4 larger than 5 nmy er tends to saturate since the increasing
r = e . .
£ 102L ;| e—ew=t12nm number of subbands contributing to the transport counterbal-
E 3 L O—0Ow=2. . .
g F :10 F A Awcagonm 3 ance the number of Pnal states available for scattering, enhanc-
E (U N DTS ing the scattering rates. As shown in Fig. 4(b), in narrower
x 0 /"jf.g’SE% o 1 GNRs, the higher the electron density, the larger the effective
= [j== LE ek b 3 mobility, because of stronger screeninger decreases for
0Lttt ol L i i iXi
105kl bkl 5 L - high n,p values and wider GNRs, due to mode mixing, as

already observed in silicon nanowire FETs [19]. Indeed, for
wider GNRs biased in the inversion regime, more transverse
modes are able to propagate in the channel due to the reduced
Fig. 4. (a) LER-limited mobility as a function o#v for nop = 0.9!  energy separation between different subbands. This leads the

3 | 2 i . .
10" cnt 2 and for differentH values. Data extracted from [6] are alsogdge defects to become a source of intermode scattering, thus
reported. (b) LER-limited mobility as a function af,p for H = 5%. reducingu

LER -

(c) LER-limited mobility as a function of edge disorder concentratibrfor

Im
3
GNR width (nm)  density nop (10'2cm™) % of edge disorder
(a) (b) ()

nap = 0.9! 10' cm' 2 and for different GNR widthsV . Fig. 4(c) showsu er as a function ofH, wherey gr )
I R b UH for wide GNRs, which is consistent with the Drude
- RESULTS ANDDISCUSSIONS model and is also observed in graphene in the presence of

The simulated segment is a double-gate GNR, embeddigfects [20]. However, as soon ¥ decreases, the quantum
in Si0, with an oxide thickness,, of 2 nm, which is localization becomes relevant [21], and the Anderson insulator-
10 nm long (see Fig. 3). The segment length has been cholisg behavior [9] is recovereduier ) /L %) in agreement
to satisfy the assumption of the loss of phase coherence at\#ith analytical predictions [6].
segment ends. Indeed, according to recent experiments [18], the
phase-coherence length is close to 11 nm in graphene. Frgm
a computational point of view, different width&% have been
considered, ranging from 1 to 10 nm, i.e., 1.12, 2.62, 4.86,The defect-limited mobility is plotted in Fig. 5(a) as a
and 10.10 nm. All simulations have been performed at roofunction of W for different defect concentrations. Even in this
temperaturd = 300 K. case, the localization affects the mobility in narrower ribbons,
particularly for highemng (2.5%).

- . For a bxed defect density, the mobility slightly increases with
A. LER-Limited Mobility the electron density due to the larger screening [see Fig. 5(b)],

The LER-limited mobility as a function ofV for differ- and for larger GNRs biased in the inversion regime, it saturates
ent edge-defect concentratiot is shown in Fig. 4(a) in with increasingV for the same reason discussed above for the
the above-threshold regime for a 2-D carrier densify of LER scattering. In Fig. 5(c)lq is plotted as a function afiy.
9%10™ cm' 2. As in all bgures in this paper, the error bardhe wider the ribbons, the closer the mobility follows the sim-
represent the estimated root mean squared érgoof the ple Drude mode(uy ) 1/n 4), as expected for strong disorder
average of the statistical sample (5). and uncorrelated scatterers in 2-D graphene sheets [22]. For

As predicted by the analytical model in [l er Scales W = 10.10 nm, atomistic simulations are in agreement with
asW*4. Such behavior holds for large (( 20%) and narrow experimental results; a linear-curve bttiflg= C/n 4) leads
GNRs (W < 5 nm) when scattering from edge defects iso a proportionality factor of 2.28 10 ¢ Vs, similar with

Defect-Limited Mobility
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Fig. 6. Carrier density1op in the GNR channel for different GNR widths. and the impurity charge is 0.4q). (d) Inverse mobility as a function ofjyp
(From top to bottomWV = 1.12, 2.62, and 4.86 nm. for W = 10.10 nm. The carrier density is,p = 0.9! 10" cm' 2. The
experimental slope 2 10 16 Vs extracted in [24] is also reported.

those extracted in the case of Nand Hé irradiated graphene

samples (7.9610 ® and 9.3% 10 ° Vs, respectively) [20]. with nyp [27], the screening becomes stronger with increasing
In Fig. 6, the GNR carrier density for widths ranging fronf2o - As & consequencguwe ) # in GNRs has the increas-

1.12 to 4.86 nm is shown. As can be seen in Fig. 6, t#&g monotonic behavior shown in Fig. 7(c). In Fig. 7(d), we

Anderson localization strongly degrades the electron mobiligPmpare experimental results available in literature [24] for

[21], creating percolating paths in wider GNRs and blockingraphene, showing the inverse of the impurity-limited mobility

the conduction in the narrower ones. as a function ofhyp for W = 10.10 nm and by considering
an impurity charge of+ 0.4g; as expected, for uncorrelated

. o . scatterersyyvp ) Lnwp , and as can be seen, experiments

C. lonized-Impurity-Limited Mobility and simulations show quite a good agreement.

The impurity-limited mobilityu.Mpz, as a function ofV, is
I N | :

§hown in Fig. 7(a) fonzp _.9%101 cm # and for different D. Acoustic- and Optical-Phonon-Limited Mobility
impurity charge concentrations. As can be noted, even a high
impurity concentration of 1% cm' 2 yields large mobility for ~ Our paper has been also directed toward the investigation of
a 0.4 impurity charge. However, no indications are preseiiie impact of phonon scattering, through the KubobGreenwood
in literature regarding the amount of the unintentional dopirfgrmalism [28], [29]. A wide range of phonon parameter values
charge [23], [24]. Therefore, in order to also check the effei currently present in the literature [1], [6], [26], [30] [i.e.,
of the impurity ionization on the electron transport, statisticalcoustic(D ac ) and optical(Dop ) deformation potentials, as
simulations have been performed by increasing the impurityell as optical-phonon energy& o]. We observe that the
charge up tot 2g. The mobility as a function of the impurity most widely used phonon parameters are those adopted in
charge is plotted in Fig. 7(b) for differel¢ and forn,p = 9% [1], [6], and [31], i.e.,.Dac = 16 eV,! & o = 160 meV, and
10" cm' 2. In this case, smaller values pf(1700 cnt/Vs)are Dop = 1.4% 10° eV/cm, where! & o is the zone-boundary
obtained for very narrow GNRs due to the strongly nonline&O phonon energy. Such values have been tested toward those
impact on screening in the channel. Even in this case, the logalevided in [7], [32], and [33], showing a good agreement as
ization strongly degrades the mobility for narrower ribbons. far as the mobility is concerned.

To further test the importance of unintentional doping in lim- To prove the validity of our approach, we have brst compared
iting the mobility, we have considered excess charge densitms results with those obtained by means of an accurate 2-D
up to 132 c?, which have been encountered in experimentdonte Carlo simulator [7]. For a fair comparison, the same
[23]. As shown in Fig. 7(a), in this case, the mobility decreas@bionon parameters and the same scattering rates as in [7] have
down to 16 cn?/ Vs for narrower GNRs. In Fig. 7(c), the been used. As can be seen in Fig. 8(a), results are in good agree-
impurity-limited mobility is plotted as a function af,p for ment, particularly for wider GNRs. However, such parameters
nwe = 102 cm' 2 and impurity charge 0.4qand for different correspond to the out-of-plane mode ZO, which, according to
W values. According to [25] and [26]smp in graphene does symmetry-based considerations [34], density functional study
not depend on the electron density. The behavior is differg85], and Raman spectroscopy [36], is much weaker than in-
in GNRs because, up to an electron density of?16m' 2, plane vibrations.
only the ground state is occupied so that the size quantum-Therefore, in the following, we adopt the parameters dis-
limit approximation is veribed [6], [27]. Since the scatteringussed above for the LA and LO phonons, and the scattering
rate 1# ) (' 2 [25] and the static dielectric functigrincreases rates described in (13) and (14). In Fig. 8(b) the acoustic- and
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Fig. 8. (a) Mobility limited by phonons (zone-boundary Z@coustic) scat- 1 2 3 4 5 ) 6 7 8 9 10
tering as a function oh,p for different widthsW, computed by means GNR width (nm)

of parameters from [7]. Data from [7] are also reported. (b) Same plot of

(a), exploiting parameters from [6], corresponding to the zone-boundary LFdg. 9. Mobility limited by phonon, LER, defect, and impurity scattering in

mode. In both plots, the threshold densities at which the different subbands e inversion regime for an LER concentratidn= 5% andngq = 0.5%. The

activated are sketched. parameters for the scattering rates have been taken from [6]. The experimen-
tal mobility from [4] is also reportedn,p = 0.9! 102 cm' 2. nyyp =

optical-phonon-limited mobility is shown as a function oft0'? cm' 2.
n,p . As expected, emission scattering rates are found to bewe

larger than absorption scattering rates due to their higher ; . .
9 - "9 . Ir_high GNRs of width ranging from 1 to 10 nm. First, we have

BosebEinstein occupation numbers. In addition, as also Qb- d that. unlike in 2-D h lectron-i " tteri
served in graphene [37], we have veribed that the contributi fynd that, uniike In ==L graphene, electron-impurity scattering
of optical phonons is also negligible in GNRs apg, is IN GNRs is far too weak to affect the low-peld mobility. In ad-

dominated by (intravalley) acoustic-phonon scattering [6], [ |t|0n|_, using ‘éve”'is'[ab;'fg etdthparf;\]meters fotrt el_ectror;]E)pdr}o?r? "
[see Fig. 8(b)]. Note also that, unlike in graphene whejg) oupting, we have folind hat tne pnonon scatiering s hardly the

1/n 5o [38], in GNRs, the transverse conbnement leads tOll iting factor of the GNR mobility. For narrower GNRs, the

nonmonotoniai,p dependence as in carbon nanotubes [39)]. R is the main scattering mechanism. This result is consistent

can be seenyp slightly increases due to the reduced numbé(\mh the Pndings in [5], Where vylder nanoribbons with very
of available states for scattering. rough edges are characterized. Finally, for a bxed defect density

We observe that several recent studies [38], [40], [41] ha & LER, the mok_Jlllty tends to_ decrease with the GNR \.N'dt.h
demonstrated that surface phonons of the substrate repres garrower devices, suggesting the occurrence of localization
severe source of scattering, which strongly limits the transpc? ects.
in graphene. However, we expect this effect to be much larger
in highk dielectrics such as HfQ rather than in Si@, which ACKNOWLEDGMENT
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