Strong mobility degradation in ideal graphene nanoribbons due to phonon scattering

A. Betti, G. Fiori, and G. Iannaccone

Dipartimento di Ingegneria dell’Informazione: Elettronica, Informatica, Telecomunicazioni, Università di Pisa, Via Caruso 16, I-56122 Pisa, Italy

(Received 27 January 2011; accepted 15 April 2011; published online 27 May 2011)

We investigate the low-field phonon-limited mobility in armchair graphene nanoribbons (GNRs) using full-band electron and phonon dispersion relations. We show that lateral confinement suppresses the intrinsic mobility of GNRs to values typical of common bulk semiconductors, and very far from the impressive experiments on two-dimensional graphene. 1 nm-wide suspended GNRs exhibit a mobility close to 500 cm²/V s at room temperature, whereas 1 nm-wide GNRs deposited on HfO₂ exhibit a mobility of 60 cm²/V s due to surface phonons. We also show the occurrence of polaron formation, leading to band gap renormalization of ≈118 meV for 1-nm-wide armchair GNRs. © 2011 American Institute of Physics. [doi:10.1063/1.3587627]

Understanding the role of phonon scattering is of primary importance, since it provides information regarding the ultimate intrinsic mobility limit (μᵢ) of a material, i.e., when all extrinsic scattering sources have been removed. This is especially important for new materials or nanostructured ones, such as graphene nanoribbons (GNRs), where experiments are not fully comparable, given the presence of defects and other non idealities. Recent experiments have found μᵢ in suspended graphene close to 10⁵ cm²/V s near room temperature (RT), but with a sizable degradation after deposition on high-k gate insulators, probably due to coupling to the polar modes of the substrate. Very few indications are available on mobility degradation in GNRs deposited on different gate insulators. As of now, μᵢ in sub-10 nm GNRs cannot be extracted from experiments since line-edge roughness (LER) is presently limiting mobility in state-of-the-art GNRs. Theory, on the other hand, allows us to individually evaluate the impact of each scattering source on mobility, which is often a prohibitive task in experiments.

Here we investigate the effect of phonons and surface optical (SO) phonons on carrier transport in GNRs by means of a full band (FB) approach based on a tight-binding (TB) description of the electronic structure and of the phonon spectrum. We compute scattering rates with first-order perturbation theory using the deformation potential approximation (DPA), and low-field mobility using the Kubo–Greenwood formula. We obtain the one-dimensional (1D) subbands of an armchair GNR from a TB p₂-Hamiltonian accounting for energy relaxation at the edges. The electron energy dispersion is quantized in the transverse direction y with wavevectors kᵧ = (2π nᵧ)/(l + 1)a, where a = 0.249 nm is the graphene lattice constant, l is the number of dimer lines and index nᵧ runs from 1 to l. Graphene phonon spectrum is obtained with the force constant dynamic-matrix approach, including contributions up to the fourth nearest neighbors (4NNFC approach) and using force constant parameters extracted from first-principles calculations. Each of the six phonon branches of graphene, labeled by the quantum number j, is split into l 1D subbranches, with transverse wave vector qₓ,ᵧ (β = 0, ..., l – 1).

The momentum relaxation rate of an electron in the initial state k = (kₓ, kᵧ) accounting for scattering from GNR phonons is obtained from the Fermi golden rule, summing over all final states k’ = (k’ₓ, k’ᵧ), conserving total energy and longitudinal momentum:

\[
\frac{1}{\tau(k)} = \sum_{\nu’,\nu} \sum_{\beta} \int_{q_k} \int_{-q_k} n_k^\pm \hbar^2 D_{\nu,\nu'}^2 \left(1 + \cos \theta_{k_k}\right) \left(1 - k’_\beta/k_\beta\right) \delta(E(k') - E(k) \pm E_{ph}(q)) / |k'_{\nu'}| \nu'_{\nu},
\]

where Dν,qDν,q = Dν,qOP, if j is a longitudinal acoustic (in-plane optical) mode, Dν,qAC and Dν,qOP = 1.4 × 10¹¹ eV/m (Ref. 3) are the acoustic (AC) and optical (OP) deformation potentials, respectively, k’_β = k’_± qᵥ, qᵥ = |q| = (qₓ² + qᵧ²)¹/², ρ = 7.6 × 10⁻²⁵ g/cm² is graphene mass per unit area, n_k^± are the Bose–Einstein occupation factor and n_q^± = n_q^± + 1. In addition, k_F = π/(3a), W = a/2(l – 1) is the GNR width, (1 + cos θ_{k_k}) is the spinor overlap, f_k,k’ = [1 – f(E_k)]/[1 – f(E_k)] is the degeneracy factor and f(E) is the Fermi occupation factor. In Eq. (1) the upper sign is for phonon absorption and the lower for phonon emission. Gν,ν’,β is the form factor due to the transverse momentum conservation uncertainty (TMCU).

We have investigated the electrostatic coupling between electrons in the GNR channel and remote phonons of the substrate considering the GNR deposited on an oxide layer of thickness t₀x, width W₀x and placed at a distance d = 0.4 nm, neglecting any modifications of GNR band structure. In addition, since remote phonon modes are almost constant as a function of the longitudinal SO phonon wavevector, we assume the same energies E_{SO} as in Ref. 1 for the two considered SO phonon modes. Since electrons are confined in the plane, the electron-SO phonon scattering rate reads:

\[
\frac{1}{\tau(k)} = \sum_{\nu',\nu} \sum_{\beta} \int_{q_k} \int_{-q_k} n_k^\pm \hbar^2 D_{\nu,\nu'}^2 \left(1 + \cos \theta_{k_k}\right) \left(1 - k’_\beta/k_\beta\right) f_{k,k’} q_{\nu’,\nu},
\]

where Q = (Qₓ, Qᵧ) represents the two-dimensional (2D) SO

aElectronic mail: alessandro.betti@iet.unipi.it.
phonon wavevector, \(Q = |Q| \), the sum \(\Sigma \) runs over all SO phonon modes, \(F_{\eta,\eta'} = 1/(L \varepsilon_{\text{ex}}) \) is the electron-phonon coupling parameter, \(G(\eta, \eta', Q) \) is the form factor which reduces to \(G_{\eta,\eta',\beta} \) if \(Q = \pm \beta \).

In Eq. (2), \(\epsilon_{1D}(Q) \) is the GNR static dielectric function calculated within the random phase approximation (RPA) in the size quantum limit. For 10-nm-wide GNRs, screening is instead modeled by means of the 2D RPA graphene static dielectric function \(\epsilon_{2D}(Q) \). From a numerical point of view, we have approximated \(\delta \) in Eqs. (1) and (2) with a Gaussian window of standard deviation \(\Delta E \) and, for the lowest AC subbranches, a collisional broadening approach has been implemented considering \(\Delta E = \hbar/2[1/\tau(k,q_{\perp} \beta)] \).

We have computed the low-field mobility \(\mu_{\text{in}} \) by means of the Kubo–Greenwood formula.

DPA formally leads to a zero coupling with the transversal acoustic (TA) and flexural (ZA) phonon modes, so that only scattering with longitudinal acoustic (LA) modes is typically considered. Theory and Raman spectroscopy have shown that ZA modes are negligible down to 130 K. However, classical results based on a TB description of electron-phonon coupling and recent \(\text{ab initio} \) calculations have demonstrated that TA modes play a comparable role as that of LA modes in degrading \(\mu_{\text{in}} \). On the other hand, by taking into account long-range interaction between carbon atoms, the off-diagonal coupling to the TA modes, through the modulation of the hopping parameters, is smaller than the on-diagonal deformation potential contribution. We choose to adopt DPA considering electron coupling only with LA, LO, and TO modes, rather than heuristically reintroduce the contribution of TA modes. We use \(D_{\text{AC}} = 10.9 \text{ eV} \), extracted from density functional theory (DFT) calculation for the GNR family 3\(+1 \) rather than fitting experiments which actually lead to a large spread of the considered values for \(D_{\text{AC}} \).

Low-field mobility is shown in Fig. 1(a) as a function of the electron density \(n_{2D} \) for different widths. \(\mu_{\text{in}} \) close to 500 cm\(^2\)/V s is found for 1-nm-wide GNR, exceeding by almost one order of magnitude the experimental mobility of GNRs (Ref. 7) and \(\mu_{\text{in}} \) of silicon nanowires (SNWs) of comparable size. We find that \(\mu_{\text{in}} \) is mainly limited by backward scattering involving AC phonons, due to the large mode-dependent OP energy offset (\(\approx 130–160 \text{ meV} \)). Unlike in 2D graphene, where \(\mu_{\text{in}} \approx 1/n_{2D} \), the lateral confine-ment in GNRs leads to a nonmonotonic \(n_{2D} \)-dependence as also observed in carbon nanotubes (CNTs) (Ref. 23) [Fig. 1(a)]. For small \(W \), \(\mu_{\text{in}} \) increases with \(n_{2D} \), due to the reduction in final states available for scattering. For wider GNRs biased in the inversion regime, electrons can populate excited subbands opening additional channels for scattering, thus reducing \(\mu_{\text{in}} \).

In Fig. 2(a), \(\mu_{\text{in}} \) is plotted as a function of temperature \(T \). Similarly to what has been observed in small-diameter CNTs, narrow GNRs the dependence on \(W \) and \(T \) can be expressed by means of the empirical relation \(\mu_{\text{in}}(W, T) = \mu_{\text{in}}(300 \text{ K}/T)(W/1 \text{ nm})^{\alpha_{\text{AC}}} \) where \(\mu_{\text{in}} = 391 \text{ cm}^2/\text{V s} \) and \(\alpha_{\text{AC}} = 2.65 \), which is close to \(\mu_{\text{in}} \propto W^2 \) expected for narrow GNRs, since \(\mu_{\text{in}} \propto 1/(W \times \text{DOS}) \propto Q^{-1} \times \text{DOS}^{-2} \) and \(Q \propto 1/W \) and the density of states \(\text{DOS} \approx 1/\sqrt{W} \). Of course, for large \(W \) \(\mu_{\text{in}} \) saturates to that of 2D graphene. Since AC in-plane phonons scattering is dominant and \(n_{\parallel} = \hbar kT/\text{h} \omega \) for \(kT > \hbar \omega \), \(\mu_{\text{in}} \propto 1/T \) [Fig. 2(a)]. The mean free path in the first subband \((L_{k}) \) is shown in Fig. 1(b) as a function of \(n_{2D} \) and in Fig. 2(b) as a function of \(T \), where \((L_{k}) \propto (v(k) \kappa(k)) \), \(v(k) \) is the group velocity and the expectation value \(\langle \cdot \rangle \) has been computed in the Brillouin zone, considering \(f(1-f) \) as the distribution function. At \(T = 300 \text{ K} \), \((L_{k}) \) is of the order of few micrometer for larger GNRs, as expected in graphene flakes, while it is \(\approx 10 \text{ nm} \) for narrower GNRs [Fig. 2(b)]. In addition, \((L_{k}) \propto 1/T \), as \(\mu_{\text{in}} \).

The SO phonon-limited mobility \(\mu_{\text{ex}} \) as a function of \(n_{2D} \) is shown in Figs. 3(a) and (b) for \(W \) smaller than 10 nm, considering GNRs deposited both on SiO\(_2\) and on HfO\(_2\). As in graphene, \(\mu_{\text{ex}} \) is the higher the dielectric constant, the larger the mobility suppression due to SO phonon scattering. In particular, we observe \(\mu_{\text{ex}} \) down to 700 cm\(^2\)/V s for SiO\(_2\) [Fig. 3(a)] and 60 cm\(^2\)/V s for HfO\(_2\) [Fig. 3(b)], due to the smaller energy offset of the EM processes. As in CNTs, \(\mu_{\text{ex}} \propto W^{-\alpha_{\text{SO}}} \) with \(\alpha_{\text{SO}} (\approx 1.4–1.6) \) dependent on \(n_{2D} \) and smaller than \(\alpha_{\text{AC}} \). For \(W < 5 \text{ nm} \) \(\mu_{\text{ex}} \) increases with \(n_{2D} \) due to the impact of screening, whereas for \(W = 10.10 \text{ nm} \) for higher concentrations \(n_{2D} \), the increase in available modes for scattering reduces mobility. Comparing Figs. 3(a) and (b) with Fig. 1(a), it can be observed that SO phonons play a secondary role for very narrow GNRs on SiO\(_2\) but they become predominant with increasing \(W \approx 2.5 \text{ nm} \) roughly for...
n_{2D}<10^{12}\text{ cm}^{-2}$, whereas they are predominant for all n_{2D} densities in HfO$_2$. Comparison with experiments shows that μ_2 is larger by up to one order of magnitude than mobility measured on GNRs deposited on SiO$_2$ (Ref. 7) and by a factor three than mobility measured on 10-nm-wide GNRs integrated with ultrathin HfO$_2$ dielectric. This gives a rough estimation of the increase in mobility that could be achieved through fabrication technology improvements. As can be noted in Fig. 2(c) and as it also occurs in CNTs deposited on polar dielectrics, $\mu_2 \propto 1/T^3$. In particular, for HfO$_2$ $\gamma=3$. Since $\mu_{e2} \propto 1/T$, SO phonon scattering dominates transport roughly above 100 K for all W [Fig. 2(c)], as for CNTs on SiO$_2$.

Finally, we focus on the polaronic energy shift δE_K due to the electron-phonon coupling, computed exploiting the second-order perturbation theory. Figure 4(a) shows δE_K as a function of E_k for the lowest two subbands for the $W=1.12$ nm case. δE_K is weakly energy dependent near the cutoff subband, is independent of T and increases sharply in correspondence of intersubband transitions. As in CNTs, mostly OP phonons contribute to δE_K [inset of Fig. 4(a)]. Unlike in CNTs, the contribution to δE_K from AC phonons exhibits few peaks due to TMCU [inset of Fig. 4(a)]. The polaronic binding energy is $\delta E_B = \delta E_G(E_k=E_{C1})$, where E_{C1} is the first subband edge, is almost 59 meV for 1-nm-wide GNRs, close to that obtained for semiconducting CNTs with the same number l (Ref. 24) [Fig. 4(b)] and corresponds to a band gap renormalization $\delta E_G = 118$ meV for 1 nm GNRs, and to a relative correction of -35% of the energy gap E_g of 10 nm nanoribbons [Fig. 4(b)].

In conclusion, we have proposed a very accurate FB approach to evaluate μ_{e2} in GNRs. We find that μ_{e2} is close to 500 cm2/V s in suspended 1-nm-wide GNRs at room temperature, and is suppressed down to 60 cm2/V s in 1-nm-wide GNR deposited on HfO$_2$, due to coupling with SO phonons. The result is important from the point of view of methodology and of fundamental physics, since $\langle E_k \rangle$ ranges from 1 to 10 nm, underlining the possibility of performing ballistic or coherent transport experiments at noncryogenic temperatures. In addition, narrow GNRs with reasonable semiconducting gap have only slightly larger mobility than comparable SNWs. Finally, we also find polaron formation in armchair GNRs, with a remarkable band gap renormalization of up to 35% for $W=10$ nm.

This work was supported in part by the EC 7 FP through NANOSIL (Grant No. 216171), GRAND (Grant No. 215752) grants, and by the MIUR-PRIN project GRANFET (Prot. 2008S2CL9). Authors thank www.nanohub.org.

REFERENCES

10. See supplementary material at http://dx.doi.org/10.1063/1.3587627 for the expressions of $\epsilon_{ij}/1/\sqrt{r_{ik}}$, μ, and δE_K.