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We study backscattering phenomena during conduction for graphene nanoribbons of pm lengths, from
single vacancy scatterers up to finite defect concentrations. Using ab initio calibrated Hamiltonian
models we highlight the importance of confinement and geometry on the shaping of the local density of
states around the defects that can lead to important alterations on the transport process, giving rise to
impuritylike conduction gaps in the conductance distribution. Within a statistical analysis of finite

defect concentration we show that conductance degradation can become very important.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Graphene is a semimetallic two-dimensional electron gas
system that has gained important attention due to its peculiar
electrical, mechanical and optical characteristics [1]. When
confined in one dimension graphene can also obtain a bandgap
that makes it an ideal candidate for post-Si CMOS integration.
However, the presence of topological defects (e.g. vacancies,
impurities) gives rise to resonant quasibound states [2] that can
significantly alter the transport characteristics by inducing
conduction gap features in the proximity of the charge neutrality
point [3-6]. At the same time high concentrations of defects can
strongly downgrade electron mobilities [7]. Under this perspec-
tive a thorough investigation of the scattering mechanism in
graphene nanoribbons becomes crucial for the device potential of
these systems.

In this article we attempt a bottom up approach in the study of
electron backscattering phenomena for vacancy-damaged
graphene nanoribbons that ranges from the physical effect of
the single scatterer in the nanoscale up to a statistical analysis of
finite defect concentration for ribbons with pm lengths. To this
end we use accurately parameterized semiempirical Hamiltonians
from first principles that account for the bandstructure of
sp2-hybridized carbon as well as the correct energy resonance
of the defect states. Results show that there is a clear relationship
between the position of the vacancy, the resonance of the defect
states, and the local density of states of the corresponding
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unperturbed system. Coupling between such features can give
rise to backscattering effects during the conduction process that
in the case of the first m—n* plateau are associated with the
opening of conduction pseudogaps. In the statistical limit of finite
defect concentrations we show that conductance downgrading
can be very large throughout the energy spectrum, compromising
graphene’s typical transport characteristics.

2. Methodology

Armchair and zigzag graphene nanoribbons (AGNRs and
ZGNRs respectively) are classified using the convention of Ref.
[8], i.e. with the integer N, (N,) indicating the number of dimer
lines (zigzag chains) across the ribbon width. We use two ab initio
parameterized semiempirical Hamiltonians with different levels
of accuracy for the correct treatment of defect states in the sp?-
hybridization scheme. The first one is formed on the basis of the
extended Hiickel theory, using a double-{ sp3d® Slater orbital
basis set [9]. Such Hamiltonian accounts for next-to-near
neighbor interactions in a natural way and accurately assigns
the resonance of the vacancy states [4]. The second one is the
nearest-neighbor tight-binding Hamiltonian with a t;=2.7eV
hopping parameter, whereas on-site energies and hopping
integrals for the defected sites have been appositively parameter-
ized in order to reproduce first-principles and extended Hiickel
results [10]. Quantum transport is studied within the non-
equilibrium Green’s function (NEGF) formalism coupled to the
Landauer-Buttiker approach [11] for the calculation of the
conductance g. A two-terminal geometry is considered through-
out the article where the defected region corresponds to the
active device part. Contacts are ideal, i.e. of the same width N, (N;)
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as the device without the presence of vacancies. Edges are
passivated with hydrogen (directly for the extended Hiickel
Hamiltonian and following the ab initio calibration of Ref. [8] in
the tight-binding case).

3. Backscattering by single vacancies

We start by identifying backscattering effects due to the
presence of single vacancies in various types of GNRs. In all cases
the response of the defect is to give rise to quasilocalized states
[12] along non-localized ones, that due to electron-hole disparity
do not preserve a mirror symmetry with respect to the Fermi level
of the system. The repercussions of quasibound states on the
conductance are not uniform, but depend on purely geometrical
criteria, giving rise to two distinct transport behaviors. Fig. 1a,b
shows conductance spectra for a semimetallic 35-AGNR where a
single vacancy has been introduced in two neighboring positions
of a chain transversal to the longitudinal axis of the systems. In
the first case significant conductance dips and pseudogap features
are present within the valence band of the first 7—n* plateau of
the system. In the second case the pure structure’s first
conductance plateau remains unaltered. A systematic study for
all dimer line positions N, (that is valid for all semimetallic AGNRs
in this study) shows that two-thirds of the total sites belong to the
first group, while the remaining one-third conforms with the
second group, according to the following rule: for N,=3p+2 dimer
lines (Vp e N), vacancies at the N,=3q sites do not affect the first
conductance plateau (vqe N, <p), while the rest give rise to
conductance pseudogaps at energies lower than the charge
neutrality point. The resonance of these pseudogaps is related to
the resonance of the defect states within this plateau under the
description of an electronic Hamiltonian that breaks electron-
hole symmetry! [4] and have strong similarities with
backscattering effects obtained by p-type impurities [13]. In a
similar manner, defected semiconducting AGNRs have
preferential sites that give conductance dips in addition to the
intrinsic bandgap, without however generally satisfying the
previous rule (see Fig. 1c,d). The case of ZGNRs is even more
particular since vacancy positioning can influence regions both
above and below the charge neutrality point. In this sense
vacancies in ZGNRs become similar to impurities with both
donor and acceptor characteristics (Fig. 1e,f). Likewise to AGNRs,
not all available sites give rise to this behavior and there are also
important alterations of the conduction gap resonances with
respect to the vacancy position.

The fundamental characteristic of the previously presented
picture, i.e. the manifestation of pseudogap features in the first
conductance plateau of defected graphene nanoribbons, has an
important geometrical aspect: the ribbon’s confinement and the
positioning of the vacancy site become crucial for the presence or
not of conductance dips. The origin of such mechanism lies in
localized or expanded perturbations of the density of states of the
systems in study in the presence of topological defects. It is well
known that one-dimensional confinement plays a particular role
in the shaping of GNR wavefunctions, giving rise to local
alterations of the wavevector’s value [4]. When a defect’s location
coincides with a zero (or extremely small) wavevector value for a
given GNR, the perturbation induced on the electronic structure
remains spatially and energetically local. Contrary, when the

! Simple first-neighbor tight-binding Hamiltonians preserve an electron-hole
symmetry in the description of the electronic structure of GNRs. In the case where
vacancies are introduced in the formalism by zeroing hoppings from and to the
defected site, the resonance of the defect state falls at zero energy. Such
description is revised by further-neighbor electronic Hamiltonians [4,10].
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Fig. 1. Conductance distribution g as a function of energy for (a) a 35-AGNR with a
single vacancy at N,=17, (b) a 35-AGNR with a single vacancy at N,=18, (c) a 33-
AGNR with a single vacancy at N,=11, (d) a 33-AGNR with a single vacancy at
Ny=12, (e) a 15-ZGNR with a single vacancy at N,=13, (f) a 15-ZGNR with a single
vacancy at N,=14.

defect lies in a GNR region with a finite wavevector value such
perturbation expands both spatially and energetically [4]. The
sum of perturbative behaviors due to the quasilocalized defect
states within the first conductance plataeu give rise to an
increased DOS distribution with respect to the ideal case. This
expanded perturbation is the reason for electron backscattering
during conduction. This concept can be visualized better through
local density of states distributions LDOS(7,E) at the positions 7 of
the device atoms at energy E:

LDOS(F,E) = | Vo () PO (E—5), (1)

where ¢, are energy eigenstates, ¥, their respective eigenfunc-
tions and ¢ is the Delta function, while summing over all atoms
gives the total DOS of the system at energy E. In the case of a
system with semi-infinite contacts the LDOS can be calculated
within the NEGF. Fig. 2a-c shows LDOS values for different
energies within the first plateau for a 38-aGNR with a vacancy at
Ny=19. It is clear that a perturbation around the vacancy site
spreads over the entire range of energies that corresponds to the
conductance dip. Contrary, for N,=18 no extended perturbation
can be detected (see Fig. 2d). The mechanism is similar also for
the other types of GNRs, respecting however the different form of
the wavevectors within the first conductance plateau. According
to the particular system, defects can provoke expanded or
localized perturbations of the LDOS in different parts of the
energy spectrum that give rise to backscattering effects.

4. Statistical conductance analysis for finite defect
distributions

Understanding of single-vacancy scattering forms the basis of
the generalized backscattering mechanism present in confined
graphene systems. However transport repercussions for realistic
devices within the micro-scale and a finite concentration of
defects can only be addressed within statistical analyses of large
replicas of equivalent systems. For this purpose we have
appositively calibrated a next-neighbor TB Hamiltonian that
reproduces results obtained by more accurate Hamiltonians in
the case of single vacancies [3,10]. Fig. 3 shows statistical
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Fig. 2. LDOS as a function of distance coordinates (in A) and energy (in eV) for a defected 38-AGNR. Defect position N, and energy E are at (a) Ny=19, E=0.27 eV, (b) N,=19,
E=0.17eV, (c) Ny=19, E=0.07 eV, and (d) N,=18, E=0.17 eV. The zero energy level refers to the charge neutrality point.
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Fig. 3. Average conductance {g)» as a function of the energy E, for a vacancy
damaged 47 AGNR. Plotted values represent statistical averages over more than
500 equivalent replicas of the system. Charge neutrality points of pure and
defected systems are aligned at E=0 in the figure.

averages for the conductance of a 0.84pum long 47 AGNR with
two finite defect concentrations (0.2% and 0.4% respectively),
obtained for more than 500 equivalent replicas of these systems.
Like in the single vacancy case, a pseudogap appears in the
hole-band region close to the Fermi level of the system. By means
of a scaling analysis [14,15] we found that the conduction regime

varies with the energy of the charge carriers, passing from the
localization regime (the localization length ¢ is ~40nm in the
center of the conduction gap for the 0.2% case) to the quasi-
diffusive one away from the conduction gap (the elastic mean free
path I, is ~ 0.4 um when E ~ 1 eV for the 0.2% case). However, the
main issue arising from multiple scatterers is the significant
downgrading of the conductance throughout the energy spectrum
that increases with the defect concentration. It is also evident that
for heavily damaged GNRs (defect concentrations of 0.4% here)
conductance becomes extremely low and typical graphene-like
properties practically vanish. Crystalline quality is therefore a
fundamental prerequisite for the maintenance of device-related
characteristics like high electron mobilities and current densities.

5. Discussion

In this article we have examined the role of vacancy defects in
the conduction mechanism of graphene nanoribbons, from single
scatterers to finite concentrations in pm- sized GNRs. Results have
shown that vacancies can give rise to impurity-like pseudogaps in
the first conductance plataeu of these systems on the basis of
purely geometrical criteria. The underlying mechanism is subject
to localized or expanded perturbations of the density of states of
these systems according to the positioning of the defect and the
confinement of the GNR. Large-scale statistical analyses have
shown that a finite defect concentration can significantly down-
grade the conducting capacity of these systems with important
repercussions in the entire conductance distribution. Based on
this picture particular attention should be paid for the presence of
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defects in GNR samples since the backscattering mechanism can
on one hand allow for the engineering of mobility gaps while on
the other it can negatively affect important conduction properties
like electron mobility and high carrier density.

It is expected that a more realistic description of quantum
transport in defected GNRs should also account for the presence
of non-ideal contacts, introducing in the computational formalism
elements that deal with the chemical bonding between the GNR
and the metallic lead as well as electrostatic aspects like the
presence of Schottky barriers due to work function differences
[16]. In this sense we can expect new features arising with a
chemical/electrostatic background that should act complemen-
tary or even interact with the scattering effects presented in this
paper. A thorough investigation towards this direction would
allow for a more concrete understanding of the quantum
transport process in these systems.

Acknowledgements

This work has been partially supported by the European
Science Foundation (ESF) under the EUROCORES Programme
EuroGRAPHENE CRP GRAPHIC-RF.

References

[1] AH.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Reviews of
Modern Physics 81 (1) (2009) 109.

[2] HJ. Choi, J. Ihm, S.G. Louie, M.L. Cohen, Physical Review Letters 84 (2000) 2917.

[3] A. La Magna, 1. Deretzis, G. Forte, R. Pucci, Physical Review B 80 (19) (2009)
195413.

[4] 1. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Physical Review B 81 (8)
(2010) 085427.

[5] B. Biel, F. Triozon, X. Blase, S. Roche, Nano Letters 9 (2009) 2725.

[6] S.M.M. Dubois, A. Lopez-Bezanilla, A. Cresti, F. Triozon, B. Biel, J.-C. Charlier,
S. Roche, ACS Nano 4 (4) (2010) 1971.

[7] J. Chen, W.G. Cullen, C. Jang, M.S. Fuhrer, E.D. Williams, Physical Review
Letters 102 (23) (2009) 236805.

[8] Y. Son, M.L. Cohen, S.G. Louie, Physical Review Letters 97 (21) (2006) 216803.

[9] D. Kienle, J.I. Cerda, A\W. Ghosh, Journal of Applied Physics 100 (4) (2006)
043714.

[10] I Deretzis, G. Forte, A. Grassi, A. La Magna, G. Piccitto, R. Pucci, Journal of
Physics Condensed Matter 22 (9) (2010) 095504.

[11] S. Datta, in: H. Ahmed, M. Pepper, A. Broers (Eds.), Electronic Transport in
Mesoscopic Systems, Cambridge University Press, Cambridge, 1995.

[12] V.M. Pereira, J.M.B. Lopes Dos Santos, A.H. Castro Neto, Physical Review B 77
(11) (2008) 115109.

[13] B. Biel, X. Blase, F. Triozon, S. Roche, Physical Review Letters 102 (9) (2009)
096803.

[14] A. Cresti, S. Roche, Physical Review B 79 (23) (2009) 233404.

[15] A. La Magna, I. Deretzis, G. Forte, R. Pucci, Physical Review B 78 (15) (2008)
153405.

[16] I Deretzis, G. Fiori, G. lannaccone, A. La Magna, work in progress.



	Quantum transport modeling of defected graphene nanoribbons
	Introduction
	Methodology
	Backscattering by single vacancies
	Statistical conductance analysis for finite defect distributions
	Discussion
	Acknowledgements
	References




